DEGREES OF CONFIRMATION
نویسندگان
چکیده
Статья представляет очередной, но не последний этап исследования аргументации с формальной точки зрения. Обсуждается тема оценки аргументации, при этом я фокусирую внимание на оценке именно аргументативных рассуждений. Во введении дается краткая характеристика рассуждений, уточняется их спеицифика и устанавливается преемственность предыдущей работой по этой теме. В первом разделе рассматриваются рассуждения модулю роль в экспликации правдоподобного следования. При особое уделяется дедуктивно некорректным, вполне приемлемым аргументативном контексте схемам рассуждений (утверждение консеквента, отрицание антецедента т. п.). Следующий раздел посвящен обоснованию нового подхода к формализации основе понятия условной логической вероятности, что позволяет различить степени подтверждения заключения посылками. Наконец, заключительной части подводятся итоги намечаются направления последующей работы. The article represents the next, but not last, stage of study argumentation from a formal perspective. subject under consideration is evaluation argumentation, and here I focus on argumentative reasoning. introduction gives brief description types reasoning, clarifies their specificity provides consistency with previous paper this topic. first section discusses modulo reasoning its role in explication plausible Notably, special attention paid to deductively incorrect schemes that are quite acceptable context (Affirming Consequent, Denying Antecedent, etc.). next devoted substantiation new approach formalization based concept conditional logical probability, which makes it possible distinguish degrees confirmation conclusion by premises. final summarizes results research outlines directions for future work.
منابع مشابه
CHARACTERIZATIONS OF (L;M)-FUZZY TOPOLOGY DEGREES
In this paper, characterizations of the degree to which a mapping $mathcal{T} : L^{X}longrightarrow M$ is an $(L, M)$-fuzzy topology are studied in detail.What is more, the degree to which an $L$-subset is an $L$-open set with respect to $mathcal{T}$ is introduced.Based on that, the degrees to which a mapping $f: Xlongrightarrow Y$ is continuous,open, closed or a quotient mapping with respect t...
متن کاملDegrees of Efficiency and Degrees of Minimality
In this work we characterize different types of solutions of a vector optimization problem by means of a scalarization procedure. Usually different scalarizing functions are used in order to obtain the various solutions of the vector problem. Here we consider different kinds of solutions of the same scalarized problem. Our results allow us to establish a parallelism between the solutions of the...
متن کاملDegrees of Truth, Degrees of Falsity
In this paper I recall the reasons in favour of extending the classical conception of truth to include degrees of truth as well as truth value gaps and gluts, then provide a sketch of a new system of logic that provides all of these simultaneously. Despite its power, the resulting system is quite simple, combining degrees of truth and degrees of falsity to provide a very flexible and elegant co...
متن کاملDegrees of M-fuzzy families of independent L-fuzzy sets
The present paper studies fuzzy matroids in view of degree. First wegeneralize the notion of $(L,M)$-fuzzy independent structure byintroducing the degree of $M$-fuzzy family of independent $L$-fuzzysets with respect to a mapping from $L^X$ to $M$. Such kind ofdegrees is proved to satisfy some axioms similar to those satisfiedby $(L,M)$-fuzzy independent structure. ...
متن کاملDegrees That Are Not Degrees of Categoricity
A computable structure A is x-computably categorical for some Turing degree x, if for every computable structure B ∼= A there is an isomorphism f : B → A with f ≤T x. A degree x is a degree of categoricity if there is a computable structure A such that A is x-computably categorical, and for all y, if A is y-computably categorical then x ≤T y. We construct a Σ2 set whose degree is not a degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ??????-??????????? ??????
سال: 2022
ISSN: ['2071-9183', '2223-3954']
DOI: https://doi.org/10.52119/lphs.2022.94.36.013